load("functs.mc"); [a,b,c,d,e]; rempart(%,[3,4]); /* RATMX:TRUE; */ /* Find out whether these functions are linearly dependent or linearly independent. */ [SIN(x),COS(x),SIN(x-1)]; /* The Wronskian matrix */ wronskian(%,x); /* The Wronskian determinant is zero. Thus the three given functions are linearly dependent. */ expand(DETERMINANT(%)); (2-3*%I)/(%I+4); conjugate(%); MATRIX([1,0,5*%I],[-2*%I,2,0],[1,1+%I,0]); conjugate(%); expand(adjoint(%TH(2))); tracematrix(%TH(3)); (2+%I)/(3-%I); rational(%); logand(15,5); logxor(5,6); logor(4,9); /* uprobe([foo,bar]); uprobe([functs,demo,share]); */ kronecker(5,5); nonzeroandfreeof(z,y+4); /* 3*z+(y+1)*z+y^2; This expression is re-formed first as linear in z, then as quadratic in y linear(%,z); quadratic(%TH(2),y); */ gcdivide(a*x-b*x,a*x+b*x); gcdivide(a^2-b^2,a^2-2*a*b+b^2); LCM(EXPAND((X+Y)^3),2,4,5,25,X^2-Y^2); arithmetic(0,17,7); geometric(8,8,5); harmonic(1,2,3,4); arithsum(7/2,43/20,11); geosum(1,-21/10,6); geosum(1,21/10,6); geosum(2,1/2,INF); gaussprob(223/100); gd(69/200); agd(%PI/6); vers(19*%PI/90); covers(19*%PI/90); exsec(13*%PI/45); hav(47*%PI/200); combination(9,3); permutation(9,3);